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FOREWORD

It sometimes occurs that an experiment, planned for one specific
objective, provides observational results far beyond the single-purpose mission
for which it was originally conceived. Projeci Pegasus, which has the primary
objective of measuring the near-earth meteoroid environment, is an example in
case. The three satellites have now spent 65 000 hours in orbit. They have
provided, and are still providing, observational data not only on meteoroid
punctures but also on Van Allen belt radiations, on earth albedo, on th~ sola:
constant, on orbital and gyroscopic motions of rigid bodies, on the deg: adation
of surface coatings under space environmental conditions, on thermal control
systems, and on the lifetimes of electronic components in space operations.

Organization, development, and technical details of Project Pegasus and
preliminary results of the various measurements have been published previ-
ously. The present report is an anniversary review of Pegasus results on the
occasion of the second birthday in orbit of Pegasus III on July 30, 1967. It was
written by those who have reduced, analyzed, and interpreted the measured
data during these past two years.

Ernst Stuhlinger,
Director. Space Sciences Laboratory

vii



TECHNICAL MEMORANDUM X-53629

SCIENTIFIC RESULTS OF PROJECT PEGASUS
INTERIM REPORT

SUMMARY

Project Pegasus, which has the primary objective of measuring the
near-earth meteoroid environment, has provided observational results far
beyond the mission for which it was originally conceived. It has provided not
only observational data on meteoroid punctures but also on Van Allen belt
radiations. on earth albedo, on the solar constant, on orbital and gyroscopic
motions of rigid bodies, on the degradation of surface coatings under space
environmental conditions, on thermal control systems, and on the lifetimes
of electronic components in space operations.

INTRODUCTION

The purpose of this report is to present the latest results from the three
Pegasus satellites. Pegasus I was launched on February 16, Pegasus II on
May 25, and Pegasus III on July 30, all during the year 1965. The three
Pegasus satellites have been tranamitting valuable data continuously since their
launch dates; the most current results from the reduction and evaluation of
these data are described in this report.

The Pegasus program was managed by the Office of Advanced Research
and Technology in NASA Headquarters; project management was performed by
the Marshall Space Flight Center (MSFC). Details on the history, management,
and operation of Project Pegasus are given in the First Surmary seport {1],
which also describes the structural and systems design of the Pegasus space-
cratt, as well as the characteristics of the scientific experiments. This report
will not repeat that information; therefore, the reader should refer to the First
Summary Report [1] if details are desired.

The configuration of the Pegasus spacecraft is shown in Figure 1. This
fllustration depicts some of the components mentioned i later sections of this
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report. The total meteoroid detector area, consisting of both sides of the wing
panels, is abe': 200 m?. Of this area, the 0. 038-mm detectors comprise

8 m?, the 0.2-inm :" jectors comprise 17 mz, and the 0. 4-mm detectors com-
prise 175 m?. The component sections of this report were written by members
of the Space Sciences Laboratory of MSFC. The authors have been continuousiy
involved in the reduction and evaluation of Pegasus data. The report not only
presents the direct observational Jdata received from the three Pegasus satel-
lites but also summarizes theoreticel work which is related to the evaluation
and analysis of Pegasus data. (See Meteoroid Mass Flux and Rigid Body Rota-
tional Theory.) This document is an interim report on the scientific results

of Project Pegasus. A niore comprehensi@e report will be issued after all data
iiave been received and evaluated. Present plans call for the three Pegasus
spacecraft to continue operating until October 1, 1957. ,

METECROID IMPACTS

E]

Based upon the evaluation of date. available in early May 1967, the tnree
Pegasus spacecraft have recorded a combined total of 1997 meteoroid penetra-
tions on the three panel thicknesses during their lifetimes in orbit. The 0. 4-mm
panels on all spacecraft have recorded a total of 392 penetrations in 94 801

mé-day for a flux of 0. 0041 penetration/m? -day; the 0.2-mm panels have recorded
61 penetrations in 3512 m2~day for a flux of 0.017 penetrations/m? day; and the

0. 038-mm panels have recorded 1544 penetrations in 9234 mz—day for a flux of

0. 166 penetration/ mz-day. The over-all penetration rates are broken down by
satellite in Table I; the flux values shown are observed values uncorrected for
earth shielding and other factors.

It may be seen that the penetration rates for the 0.4-mm panels on
Pegasus II and III agree as closely as do the 0. 038-mm panels on all three
spacecrait, and these results may be combined for further analyses. The
four penetrations recorded by the 0, 4-mm panels of Pegasus I preclude the
value of this satellite in further analyses, although the observed flux is within
reasonable statistical bounds with Pegasus II and III.

In Figures 2 and 3, the meteoroid penetration data for the 0, 4-mm
panels of Pegasus II and III and for the 0. 038-mm panels of Pegasus I, II, and
III are displayed on a monthly basis. The data were collected over the entire
lifetimes of the spacecraft. Error bars are included to denote a 1o deviation
from the observed flux.
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. In Figures 4 and 5 the numbers cf recorded penetrations versus the

days of the year are portrayed for the 0.4~mm and 0. 038-mm panels of Pegasus
I and IIl. In these illustrations the observed number of events is compared

with the expected number which was calculated on the basis of the active panel
area for that particular day. Once again, the data were collected over the
entire lifetimes of the spacecraft, On thosg day:s for whica the expected number
of penetrations is zero, tne area is such that less than 0.5 penetration for that
day is expected. Heavy concentrations of events are of particular interest

when related to known rr.eteor showers. It may be noted from the illustrations,
however, that only two such concentrations occur in which the number of
observed penetrations excr 2ds the expected number by any substantial margin
during the period of 1 meteor shower., The 0. 038-mm panels recorded 142
penetrations during the Taurids when 128 were expected, and the 0. 4-mm panels
recorded 13 penetraticns during the Leonids when 6 were expected. However,
such concentrations may be purely statistical, as variations exceeding 2¢ and
30 limits are occasionally expected on statistical grounds (see Table I).

TABLE I. METEOROID FLUX MEASUREMENTS FOR
PEGASUS SPACECRAFT
Thickness of Detector Panel
0,038 mm 0.2 mm 0.4 mm

Pegasus 1

Area-Time (m?-day) 1720 248 1925

Penetrations 273 8 4

Flux (penetrations/m2-day) 0. 159 0. 032 0. 0021
Pegasus II

Area-Time (m*-day) 3520 2466 46 846

Penetrations 268 38 189

Flux (penetrations/m*-day) 0. 161 0. 015 0. 0042
Pegasus III

Area-Time (m?-day) 1044 798 46 030

Penetrations 705 15 189

Flux (penetrations/m?-day) 0.174 0. 019 0. 0041
(observed flux values are uncorrected for earth shielding)
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A number of other analyses, particularly directional and positional
analyses, are being conducted at present. They involve small deviations from
expected results and require considerable data to substantiate such deviations.
The analyses are still inconclusive at this writing.
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METEOROID MASS FLUX

The Pegasus meteoroid experiment was designed to give directly a
penetration flux in three thicknesses of aluminum. This obviously is the item

of primary importance for determining the amount of meteoroid protection
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needed ior a particular mission. However, to compare such measurements
with other measurements such as radar or optical observations of meteor
entry, it is desirable to interpret the penetration measurements in terms of a
mass flux. It becomes necessary to introduce a penetration equation to relate
the thickness of material penetrated T, to the mass m, velocity v, density p,
and impact angle 6 of the meteoroid. Such an equation must be empirical and

a B

the form assumed is T=kp v my (cos 6)(S where k, @, 8, v and 6 are constants
to be determined experimentally. The mass required to perforate a given
detector depends on thickness of the detector as well as the density, velocity,
and angle of impact, and is denoted m(T, p, v, ). Obviously, any mass larger
than this will also penetrawe. The penetration rate observed ¢(T) for an iso-
tropic meteoroid distribution may be expressed by

oo o0

o(T) = _gnf dQ{ dpf dv dmcosenp(p) nv(v) nm(m)

0 m(T, p, v, 6)

where np(p) and nv(v) are the normalized density and velocity proba-
bility density functions, and nm(m) is the directional mass flux distribution
function such that nm(m) dm is the number of meteoroids with mass

between m and m + dm within unit solid angle incident on unit area in unit time.

It is convenient to introduce a cumulative mass flux

N(m) =7 [ n_(m)dm
m

where N(m) is the number of meteoroids with mass m or greater encounteringa
flat, randomly oriented unshadowed surface of unitarea in unit time. This is the
quantity generally reportedin other measurements. It is also convenient to

specify a characteristic mass mc for a particular detector which is defined as the

mass required to perforate the detector for a meteoroid havingaverage density,
average velocity, and normal incidence. A relation between the observed
penetration frequency, ¢(T), and the encounter frequency for meteoroids with
mass characteristic to that detector, N(m), can be shown to be [2]

N(m ) ar/y My
LR R0,

T (14 6M/2 A A/
/2y) <p>a /Y <V>B Y



where

d log N (m)
d logm m

The bracket <> denotes the average >f the quantity enclosed. To evaluate
these averages, the density distribution np(p) and the velocity distributicn

nv(v) must be known. A range of values for the exponents have been found by

experimentation and theoretical considerations to be:

a = 0-1/3

B = 1/2 -1

y = 1/3 - 19/54
6 = 2/3

A =0.3-1.4

Recent work with porous projectiles with densities down to 0.7 gm/cm® and
computations [3] using equation of state for porous aluminum with bulk densities
of 0. 44 gm/cm? indicates that the penetration for a given mass of material is
practically independent of density for the range 0.44-2.7 gm/cm®. Taking a= 0
seis the ratio of averages involving densities to unity. The largest value that
could reasonably be expected for aA/y is about 1. This value also would set
the ratio of averages to unity. For any reasonable value of @ and distribution

n (p) the density term will range from 0.9 to 1.0. Thus the fact that distri-

butlon of densities is not well known is relatively unimportant.

The exponent in the velocity term, SA/y will be approximately 2, The
velocity distribution is not well known, but a reasonable range of values for the
raiio of averages arising from the velocity distribution is 1.0 to 1.2 with an
upper limit of 2. This latter value is obtained by assuming a most unreason-
able velocity distribution, i.e., a bimodal distribution with 77 percent at
11 km/sec and 23 percent at 72 km/sec to give an average velocity of 25 km/sec.

It may be seen that effects from density and velocity distributions tend
to counteract one another and to a good approximation may be ignored. The
only significant factor that makes ihe encounter frequency differ from the
penetration frequency is the term 1/(1 + 6A/2y) which accounts for the
decrease in penetrating ability of meteoroids with increasing obliquity of impact.
This factor is approximately 0. 5 which means that only half the meteoroids with



mass sufficient to penetrate at normal incidence at average velocity w?ll
2ctually penetrate because of their obliquity. *

Having determined the relation between observed penetration frequency
and mass flux, the remaining task is to determine the mass characteristic to
each detector thickness. Estimates of this characteristic mass can be made
by extrapolating various empirical penetration formulas to the average mete-
oroid velocity, but because of the complex structure of the Pegasus detectors,
penetration formulas developed for semi-infinite targets or for single plate
targets cannot be relied upon. Considerable effort was expended in calibrating
the actual Pegasus detector panels using the hypervelocity ranges at Hayes
Internatioral [4], North American [5], and Illinois Institute of Technology
Research Institute [6]. The procedure employed in the tests was to select a
projectile size and vary the impact velocity to determine th2 velocity that just
causes perforation [7]. This is repeated for several projcctile sizes resulting
in a plot of perforation velocity as a function of mass. This plot using log-log
scales is extrapolated on a straight line to the average meteoroid velocity,
taken to be 25 km/sec. The resulting mass is the characteristic mass for the
detector.

For the 0.02-cm and 0. 04-cm Pegasus detectors the particle sizes
ranged from 130 to 436 4 diameter spheres. Perforation velocities were
determined from 4 to 7 km/sec. The projectile materials were styrene-
divinyl benzene (p = 0. 9g/cm?®) and borosilicate glass (p = 2.2g/cm?®). Little
if any difference could be determined between the two materials when compared
on the basis of mass, and in light of other evidence of the fact that projectile
material is unimportant in the density range of interest, no adjustment was
made for density.

The thinnest target was calibrated using the same projectile materials
but with sizes ranging from 70u to 234 and velocities ranging from 3 to 18
km/sec. Unfortunately these high velocities could nct be obtained with pro-
jectiles large enough to perforate the thicker targets.

* An equivalent way of expressing this would be to define the characteristic mass
as that mass that would just penetrate with average velocity and with average
angle of impact, which happens to be 45 degrees for an isotropic distribution.
With this definition, the encounter frequency will be almost the same as the
perforation frequency, but the mass characteristic to the detector is larger.
Since it is convenient to perform calibration shots at normal impact, the
original definition of characteristic mass is preferred.
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All calibration tests were performed on small samples of detector
which were not electrically operative. Perforation was established by sensing
a rear impact flash through the foam backing. All but a thin (several milli-
meter) layer of foam had been removed. This was the same criteria as was
used in the acceptance tests of these Pegasus detectors prior to flight in which
the detection probability had been established on the basis of several hundred
shots as the ratio of the number of detectable signals to rear impact flashes.
The data had already been adjusted by this factor (which is approximately
0. 85). Therefore, it is reasonable to calibrate according to this criteria.

The characteristic masses determined from these tests are:

Characteristic Penetration
Detector Mass Rate ¢(T)
0.04 cm 9.5x 10" gm 0.00706/m? day
0.02 cm 1.6 x 10" gm C. 0305/m? day
0. 0038 cm 1.3x 1078 gm 0.273/m? day

The penetration rate values in the above table were corrected for earth shield-
ing. The listed values represent the flux without the influence of the earth's
shadow. The mass flux, i.e., the number per unit area-time with mass m or
greater encountering a surface unshadowed by the earth is given by log

N(m) = - 0. 1407 (log m)? - 2.742 log m - 13. 316 (no./m? day) for the interval
~9=<logm=-6.

RADIATION MEASUREMENTS

Each of the three Pegasus satellites is equipped with a two-channel
radiation spectrometer. Each detector is a 27 solid angle device for measuring
trapped electrons with a minimum of proton background. Channel 1 of the
spectrometers on Pegasus I and II has a threshold of 0. 5 MeV; the s-zond chan-
nel gives a count rate of electrons with energies above 2 MeV. The count rate
output is sampled every five minutes. Many radiation spectrometers flown
today have more than thirty channels; the two-channel spectrometer on the
Pegasus satellites was obviously not a main experiment but rather a house-
keeping measurement. The purpose of the electron measurement was to deter-
mine the electron environment encountered by the meteoroid detector panels.

It was feared that electrons would be deposited in the dielectric material in

11
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great enough numbers to cause a breakdown which would erroneously indicate
a meteoroid impact. Analysis of the radiation data and meteoroid data has
proven that radiation did not cause spurious meteoroid counts,

All of the Pegasus satellites pass through the South Atlantic anomaly of
the earth's magnetic field. The South Atlantic anomaly is the region where the
Van Allen radiation belts dip closest to the earth, and, therefore, the region
where particles, through interactions with the atmosphere, are lost from the
belts. The radiation belts are reducing in electron intensity as Starfish elec-
trons (electrons placed in the belt by high altitude nuclear explosions) are
dumped in the anomaly region. Figure 6 shows the path of Pegasus I with a
typically high count rate in the anomaly. Several satellites with charged par-
ticle detection systems more sophisticated than' Pegasus have recorded data in
this region. All of these satellites except Pegasus had relatively short life-
times. There is an overwhelming problem in obtaining an exact flux reading
from two different satellites by different investigators. Therefore, a long-term
investigation of the South Atlantic anomaly had not been successfuily completed
before Pegasus.
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FIGURE 6. ELECTRON COUNT RATE FOR PATH THROUGH
ANOMALY FOR PEGASUS 1
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The Pegasus radiation data are unique and extremely valuable due to the
long lifetimes of the Pegasus satellites in this region. Before Pegasus data
werc obtained, the decay of the Starfish electrons was considered to be expo-
nential. Based upon the analysis of Pegasus radiation data, a paper [8] was
presented at the American Geophysical Union Meeting in April 1967 showing
that:

(1) The decay of the 0. 5-MeV electron flux at I. £ 1. 2 deviated signifi-
cantly from an exponential. The departure from the exponential was caused by
a long-term flux enhancement, by a factor of as high as 4, from June {565 to
August 1965. This enhancement was related, but not clearly correlated tc the
magnetic activity. This effect was observed up to L = 1. 4, but only at the
higher B values.

(2)/ For L > 1.5, B/Bo > 3, the decay constant 7 defined by
¢ = ¢>0e't" T, where ¢ is the omnidirectional flux for E 2 0.5 MeV, shows a
strong B dependence. For example, at L = 1.6, B/Bo =3, T =194 % 16 days,
whereas at B/B0 = 3.3, T = 124 + 18 days.

(3) The spectrum at L > 1.5 and high B/ B0 was found to harden with
time during 1965.

(4) A change in the spatial distribution of the high-energy electrons
was observed.

To extend and complete this study, B and L values will be examined
closely, and temperature corrections will be made. While this is being done,
the gross over-all radiation decay in the anomaly region as a whole will be
examined. As a method of record~keeping, the peak fluxes for each day have
been plotted. As the satellite orbit precesses and apogee occurs in the anomaly,
the measured flux rises. The flux drop3 as the perigee enters the anomaly
region. The period is approximately 18 days. Figure 7 shows the degradation
of Pegasus I flux. Figure 8 indicates the degradation of I'egasus II flux. It is
obvious that this information gives no indication as to the mechanism by which
particles are removed from the belts, but only a method for estimating the
decay.
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THERMAL MEASUREMENTS

There was a total of 24 "housekeeping' temperature probes on each
Pegasus satellite, and five probes on a thermal control coatings experiinent
package. These probes provide the data used in making an evaluation of the
thermal design of the spacecraft.

Degradation of the SMA S-13 White Coating

The service modale adaptor (SMA) of each Pegasus sateilite was coated
with S-13 white coating (ZnO in methyl silicoue, produced by the Illinois
Institute of Technology Research Institute) to provide a large, low-temperature
heat sink for the electronics package. Preflight calculations had estimated that
the SMA average temperature should be about 220° K. This figure was based on
predicted spacecraft motion and internal heat generation and on measured values
of as /gT (ratio of solar absorptance to total hemispherical emittance) for the

S-13 coating. Actual flight temperatures for the SMA ran considerably higher
than predicted on all three satellites. As is seen in Figures 9 and 10, the aver-
age temperatures for Pegasus 1 and Il are on the order of 250° K, and this was
also the case for Pegasus II. From the temperature and attitude data, in-flight
values for a /Er of the S-13 coating were calculated. The results shown in
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FIGURE 9. AVERAGE SMA TEMPERATURES FOR
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Figure 11 for Pegasus I were surprising in view of prelaunch measurements.
but accounted for the high temperatures ohserved. As is seen in Figure 11.
the value of as/gT is on the crder of 0.50, which is an increase of about

100 percent froin prelaunch measurements. About 30 percent of this increase
is accounted for by a vacuum effect which was later discovered. The cause or
causes of the rest of the degradation have not been determined conclusively.
Some ot the possible factors are: (1) surface damage to the S-13 coating from
LOX diffusior througb the skin oi the S-IV stage, (2) adsorption of vented
hydrogen, and (3) retrorocket plume impingement. The possibilities of LOX
damage dhd hydrogen adsorption were not investigated extensively because of
the lack of data, but films of the S-IV separation were studied in detail. No
visible darkening of the S-13 coating was evidenced, so the damage mechanism
is still undetermined.
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FIGURE 11. SMA Ozs/gT FOR 5-13 COATING (PEGASUS I)

Louver Function

An active thermal control system in the form of louvers was mounted
between the SMA radiative heat sink and the electronics canister. As was
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previously stated, SMA temperatures ran 30° K to 40° K higher than expected
due to degradation of the S-13 coating. The louver system served to compen-
sate for the increased heatsink temperature by maintaining its blades at

rather large opening angles most of the time. The opening angle was computed
using SMA and electronics canister temperatures. This angle is shown plotted
against time in Figure 12. The effectiveness of the louvers is illustrated in
Table II which shows that the canister electronics were maintained at tempera-
tures within the design limits. Figure 13 shows sample battery temperature
data which fall well within design limits.

TABLE II. RANGE OF PEGASUS TEMPERATURES

Component Design Range (° K) [Actual Range (° K}
Pegasus 1 ]
Radiation Detector 222 to 338 240 to 310
Batteries 272 to 322 295 to 300
Other Electronics 262 to 332 285 to 290
Solar Panels 194 to 339 215 to 320
Meteoroids Det :ct. Panels 167 to 394 215 to 370
Pegasus II
Radiaticn Detectos 222 to 388 240 to 310
Batteries 272 to 322 295 to 305
Other Electronics 262 to 332 285 to 325
Solar Panels 194 to 339 230 to 340
Meteoroid Detect. Panels 167 to 394 210 to 370
Pegasus I
Radiation Detector 222 to 388 235 to 305
Batteries 272 to 322 ‘ 295 to 314
Other Electronics 262 to 332 285 to 325
Solar Panels 194 to 339 235 to 310
Meteoroid Detect. Panels 167 to 394 220 to 350

18
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The Micrometecroiu Detector Panels

The micrometeroid detector panels on the Pegasus spacecraft were
given an Alodine chemical conversion coating for thermal control surfaces.
Each spacecraft had one dummy detector panel (15.24 x 15 24 ¢m) fitted with
four thermocouples for monitoring temperatures and temperature gradients
experienced as well as possible as / ‘:T degradation. Sample data from one of

these temperature probes are shown in Figure 14. Using preflight values for
the o and Er of Alodine, theoretical temperature curves were calculated for

the dummy panel and compared with actual flight data. One of these curves is
shown in Figure 15 for Pegasus I about two months after launch. It may be seen
from this that there was no apparent @ / ,gTdegradation of the Alodine at that

time. Similar data through November 1965 for Pegasus I indicate very little
degradation.

Thermal Control Coating Degradation Experiment

Each Pegasus spacecraft carried a thermal control coatings experiment
package containing four coating samples as follows:

Pegasus 1 Pegasus II Pegasus III
Lowe Bros. Black Lowe Bros. Black Lowe Bros. Black
5-13 S5-13 S-13
Alodire Alodine Alodine
Rutile Z-93 Z-93

The blackcoated sensors were used as references for the calculation of
ozs/gT values for the others. Sample sensor temperature data are shown in

Figure 16. The_as/g values calculated from Pegasus I data are shown in

T
Figure 17. It may be seen that the S-13 coating experienced an almost instan-
taneous degradation of about 30 percent. This resulted from a vacuum effect

that was not expected before launch, since at that time all of the laboratory as

measurements had been made in air. Similar data from Pegasus II are shown
in Figure 18. It nay be seen in both cases that degradation of the S-13 coating
appears to have leveled off at an ozs/ gT value of about 0.40. Alodine appears

20
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to have come to a final state with an ozs/gT value approximately equal to the

prelaunch value of 0. 86. The Rutile, a known degradable, appears to have
leveled off at about 0. 55 to 0. 60. The Z-93 coating (ZnO in petassium silicate)
which is also used on the Apollo capsule, anpears to have undergone no appreci-
able degradation.

The ""Heat-of-Fusion' Sensor

The reference sensor (coated with Lowe Bros. black paint) in the Pega-
sus III thermal control coatings <xperiment package consisted oi a hollow
cylinder containing a small amount of the paraffine, hexadecane. This material
melts at about 293°K and has a high heat of iusion. Its presence serves to
damp thermal oscillations of the sensor. as shown in Figure 19. This concept
for passive thermal control of spacecraft is now under extensive investigation.
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EARTH ALBEDO MEASUREMENTS®

The temperature data from the thermal control coatings experiment
package provided a convenient source of input for calculations of the earth's
albedo. Equations describing thermodynamic equilibrium of two of the thermal
sensors were solved simultaneously for the earth albedo term, defined in this
case as the ratio of reflected to incident solar radiant flux. Earth infrared
contribut on was eliminated by the choice of proper sensors. The thermal
input consisted of simultaneous data from the bl-ck reference coating sensor
and the white S-13 coaling seusor.

Resulting values of earth albedo obtained by this procedure were plotted
as a function of the corresponding earth longitude. Three such curves are
shown in Figures 20, 21, and 22; the orientation of the Pegasus spacecratt was
a limiting factor in the availubility of usable thermal input data, and thus the
temporal separation of the albedo data is rather large. However, these curves
correspond to widely separated geographic regions and cover a large variety
of tor »graphical features with which to establish some correlation.

Coupled with the analysis of thesc resulis, certain nephanalyses (cloud
charts) and photographs from Tiros IX were studied to establish a currclation
of earth cloud cover with earth albedec. The results are presented as sections
of the pertinent nephanalyses with the projected orbit of Pegasus I plotted for
reference.

In Figure 23. the first albedo curve is plotted directly under the corre-
sponding Tiros cloud chart. A smooth curve drawn through the data points,
ignoring the large central veak, would approximate the curve predicted by
assuming the earth tu be a diffuse reflector and postulating Rayleigh scattering of
incident sunlight in the atmosphere. As Pegasus progressed in its orbit, the
sensor normal pointed through progressively deeper layers of the earth's
atmosphere so that Rayleigh scattering would, indeed, have become increasingly
more prominent in providing sensor heat input and, thus, in determining the
shape of the calculated albedo curve.

* The general source of information for this section is "Earth Albedo Studies
Using Pegasus Thermal Data” by R. C. Liaton; AJAA Thermophysics Specialisis
Conference, no. 67-332, New Orleans, La., April 17-20, 1967.
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As shown in Figure 23, the dominant feature of the area viewed by the
Pegasus sensor is the extensive cloud cover. The central peak observed in the
albedo curve should correspond to the great cloud mass lying southwest of the
North American coastland. East of this great cloud mass, a large open area is
shown which should account for the rapid decrease in albedo values correspond-
ing to this region. Not shown in Figure 23, but readily observed in the Tiros IX
photographs, is a region of highly varied cloud coverage lying north of 30° lati-
tude. The distribution of this cloud cover precludes a precise correlation with
the albedo values, although the overall density is sufficiently high to produce
the albedo magnitudes shown through 270° longitude. The remainder of the
albedo curve, as previously mentioned, could result from Rayleigh and Mie
scattering in the earth's atmosphere. A more illustrative, though less accurate,
presentation of these data is given in Figure 24,

Pegasus I thermal data,received on April 11, 1965 (Fig. 21), were used
in obtaining the albedo results discussed in this paragraph and the two that
follow. As can be seen in Figure 25, the first half of the projected orbit of
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FIGURE 23. CALCULATED EARTH ALBEDO CORRELATED WITH
TIROS IX CLOUD CHART, USING PEGASUS I THERMAL DATA.
MARCH 20, 1965.

Pegasus crosses the northern regions of Africa; and almost total lack of cloud
cover over this area on April 11, 1965 provided an opportunity to observe the
unperturbed albedo of the underlying surface.

Magnitudes of initial points of this albedc curve may be explained hy
postulating Payleigh and Mie scattering in the atmosphere and considering the
high reflectivity of desert sands such as those the projected orbit crosses. As
the satellite moved over the surface, the sensor normal intersected progres-
sively less of the earth's atmosphere, thus decreasing the importance of Ray-
leigh scattering in tlie albedo received by the Pegasus sensors (the negative
slope of the albedo curve}. The curve through longitude 40 reflects this decrease.
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The surface contributing to the remauning portion of the albedo curve
consists mainly of ocean waters. A decreasing slope with relatively small
magnitudes of albedo between 40> and 70° longitude (Fig. 25) should corre-
spond to the low reflectivity of these ocean waters. Although scattered cloud
cover over this area was observed in Tiros IX nephanalvses for this date, it
was not significant. Predominant cloud masses, however, were centered about
the area corresponding ‘o the large peak in the albedo curve at longitude 80,
and this is a striking illustration of the effect of massive cloud formations.
The remaining points of this albedo curve, all of which are not shown, are
relatively scattered due in part to the variable distribution of cloud cover over
the corresponding surface.

Figure 22 shows the results of the thermal data received from Pegasus 1

on May 8, 1965. A smooth cur re drawn through the data points would closely
approximate the shape predicted by an assumption of diffuse reflection on the
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earth's surface and Rayleigh scattering in the atmosphere. The projected orbit

of Pegasus for this case, peginning at 120° longitude, passes the northern

coasiline of Australia and continues over the Coval Sea to the Mid- Pacific

region. Thus, for the greater part of this orbit, the Pegasus sensors were

receiving albedo from ocean surfaces. Tiros IX meteorological data are of

little significance for interpreting this albedo curve, not only because of a .
relatively scarcity of photographic coverage but because of the mixed density of
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cloud coveruge. The uniformity of surface characteristics and lack of dominat-
ing cloud masses apparent from a study of the Tiros IX photographs should,
however, explain the lack of a large peak in the albedo curve.

These results illustrate the variety and usefulness of Pegasus therraal
data as a source of input to studies of the earth's thermal environment.

ROTATICNAL MOTION OF PEGASUZ SATELLITES

The attitude sensing system and attitude data reduction methods for
Pegasus have been reported elsewhere [1]. This section is merely a summary
of the more significant results observed from the orientation data derived for
the three Pegasus spacecraft.

The first unexpected observation was the initial spin of 10 deg/sec (max)
on Pegasus I. Shortly after injection into orbit the spacecraft b:.;.un to spin
about its longitudinal axis. The cause of this spin was attributed to the venting
of residual gases from the S-IV stage. Changes in the venting lines on the sub-
sequent flights of Pegasus II and III reduced the initial spin to 6 1/2 deg/sec
(max) for these two spac~rraft.

The next unusual observation was the :*~rt period fluctuations, which
resembled nutations, in the sun aspect curves. Subsequent analyses proved
that these fluctuations were caused by refraction of the sunlight through the
quartz sun sensor blocks. After proper correction was made to the calibration
curves for the sun sensors, the fluctuations were eliminated.

Another phenomenon, yet unexplained, was the differences observed in
the precession time histories for the three satellites. After the spin on
Pegasus I reached the 10 deg/sec maximum about its least moment of inertia
axis, it began to precess in a conical fashion. The half cone angle of precession
continued to increase until it reached the 90° "flat tumble' mode after 14 days.
The spin was thea stabilized about the maximum moment of inertia axis.
Pegasus II did not undergo this transition, and it took Pegasus III almost a full
year to make the transition from a spin about the minimum moment of inertia
axis to a spin about the maximum moment of inertia axis.

Another significant event was the decay of the spin motion of the space-

craft. The spin decayed rather steadﬂy on all three Pegasus satellites. This
was attributed to the effects of magnetic eddy currents.
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The most significant observation from the analysis of the orientation
data and theoretical analysis was the long term periodic motion of the spin axis.
Figure 26 shows this periodicity. The angles 0 and ¢ are the spherical
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coordinate angles which define the position of the angular momentum vector
which coincides with the spin angular velocity vector if there is no nutation
angle. The angles are referred to a moving coordinate system which is defined
by the line of nodes and the orbital angular momentum vector. The theoretical
development which predicts this long-term motion is given in the next section of
this report, 'Rigid Bedy Rotational Theory. "

This theory is applicable to rotating bodies. Therefore, when the spin
of the Pegasus satellites decayed to a rate on the order of the orbital rate, the
spacecraft began librating. All three Pegasus satellites are presently in this
mode. This is a very difficult problem to correlate theoretically and experi-
mentally since the observational uncertainty in a full three-axis orientation is
approximately 20° due to the inherent inability of the infrared carth sensors to
define the vector to the center of the earth.
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RIGID BODY ROTATIONAL THEORY

The observations of the orientation of the Pegasus Satcllites, which were
telemetered from onboard sun and earth sensors, motivated extensive research
on analytical methods for describing the rotational motion of orbiting triaxizl
rigid hodies. The result of this research has been the developmenl of a new
first-order theory for the rotational motion of triaxial satellites. Three inte-
grals were derived, by the averaging principle of Kryloff and Bogoliuboff, which
determine the motion of the rotational angular momentum vector. The results
are applicable to natural or artifical orbiting bodies. This section briefly des-
cribes this new method.

The gravitational equation of motion for the angulair momentum vector of
a small triaxial orbiting rigid body with respect to the (x, y, z) rotating orbit
plane coordinate system (Fig. 27) may be written [9]

di 3M - - i FY
a—t—:'_—Rs RX(I)R-QXL- (1)

The vector L is the angular momentum vector of the small body, MG is the
gravitational constant of the primary, R is the vector from the center of mass
of the small body to the center of mass of the primary (I) is the moment of
inertial matrix of the small body with respect to the rotating coordinates and

(5} is the angular velocity vector of the rotating (x, y, z) coordinates due to
possible regression of the orbit plane.

The matrix (I) may be written as
(D =(T) (1) (T)© (2)

where (T) is the transformation from the principal axes of the small body to
the rotating orbit plane coordinates and (I) ' is the diagonalized principle
moment of inertial matrix.

Iy 0 0
H'={0 1 0
0 0 Iy
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FIGURE 27. GEOMETRY OF THE ROTATING ORBIT PLANE
COORDINATE SYSTEM

Now (T) is to be written as the product of two matrices (M) aad (B)

(T) = (M) 'B) (3)
where (M) is the transformation matrix from angular momentum vector coordi-
nate system to the rotating orbit plane system (see Fig. 28), and (B) is the
transformation from the principal axes of the small body to the angular mo-
mentum coordinate system (see Fig. 29).

Note__that the elements of (M) are functions of 6 and ¢ which define the
position of L. The elements of (B) are functions of Om’ ¢m' and "'m which
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ORBIT PLANE

(O,x,y,z) ARE SAME AS DEFINED IN FIGURE 27

(O, %Xm¥m:2Zm) ARE COORDINATES DEFINED WITH zm

ALONG THE L VECTOR. THIS IS
REFERRED TO AS THE MOMENTUM
COORDINATE SYSTEM.

FIGURE 28. GEOMETRY OF THE / NGULAR MOMENTUM
VECTOR COORDINATE SYSTEM
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(0, xmYm:Zm) ARE SAME AS DEFINED IN FIGURE 28

(0,x%,y,2') ARE THE RIGID BODY COORDINATES ALONG
THE PRINCIPLE MOMENT OF INERTIA AXES

FIGURE 29. GEOMETRY OF THE PRINCIPAL AXES
COORDINATE SYSTEM
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define the nutation, precession and spin angles of the smatl pody with respect
to the angular momentum coordinate system. The angular momentum system
would remain fixed if there was no torque on the small body.

From Figure 27 it can be seen that

0 0

Q= Qsini|= [-A (4)

f)cosi -B
and

R cosu

3

R = R sinu (5)

0

where 1 is the inclination of the orbit plane, Q is the regressior rate of the
line of nodes and u is the argument of latitude of the smail body.

Combining all of the above equations with equation (1) gives

- >

T Qx L. (6)

S Rx m m inv®T ()

-
RS R -

'3

If the rotational kinetic energy is iarge compared to the gravitational
potential energy, then the averaging principle of Kryloff and Bogoliuboff may be
applied to equation (6). Peurforming this average over a cycle of u, ¢m and

\l«m gives

=
A a - -3
%=§(Q~L) 2xL -0 x1. (7
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A first integral of equation (7) is
L%+ L% + L% = Cq (A constant). (8)
X y z

A second integral is

where bz is a constant
dl,
and -At+ Cy = - -
ﬁr(;%i-z L2 -2 Lz+Cz)2—L; : (10)

The first integral states that the motion of the end point of T. takes
place on the surface of a sphere. The second integral states the.t the motion
takes place on the surface of a parabolic cylinder; therefore, the motion takes
place on the path formed by the intersection of a parabolic cylinder with a
sphere. TL= third elliptic integral in equation (10) implies that the motion is
periodic.

Figure 30 is a plot of the normaiized components of f, in the y, z
plane, waich were calculated from the second integral given by equation (9),
data from the Pegasus I satellite, and numerical i~ 'egrations.

Figure 31 is a conceptual sketch of possible paths of motion. The
particuiar path which the angular momentum vector takes up depends on the
physical churacteristics of the small body and its initial conditions. It may be
of practical astronautical significance to note that both of these conditions may
be controllied passively.
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FIGURE 31, CONCEPTUAL SKETCH OF POSSIBLE PATHS OF
MOTION OF THE ANGULAR MOMENTUM VECTOR IN THE z, y PLANE
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ELECTRONICS OPERATION

The electronic subsystems of the three Pegasus satellites and the over-
all Pegasus electronic system are illustrated in Figure 32. Two years or more
of operation by each satellite without any loss of prime experiment data due to
electronic failures has proven that the design concept of using redundancy is of
definite advantage. The value of using redundancy in the design is illustrated
by noting that Table III shows that redundancy has been required in all three
subsystems in which it was used. The reliability and length of operation of
electronic subsystems have greatly exceeded all expectations. For example the
batteries, with a life expectancy of ten months, have operated for two years or
more with only one minor problem. No electronic failure has seriously de-
graded the performance of any Pegasus satellite. The most significant failure
has resulted only in the intermittent loss of the housekeeping data of Pegasus II.

There are approximately 90 major electronic subassemblies in each of
the three satellites. Hence, in the three satellites there are some 270 major
electronic subassemblies of which only 10 have failed. This extremely low
rumber of failures is even more interesting when.one considers the complexity
of the equipment and thc number of components in some of the subsystems. For
example, each satellite contains a magnetic core memory which utilizes 30 080
magnetic cores plus associated read-and-write electronics. A test has recently

been completed to test every core on each satellite; not a single failure of either
the cores or their electronics was detected. This fact may very well intluence

the data-gathering techniques used on future spacecraft.

Experience with Pegasus I resulted in adding burn-out, blow-out and
disconnect circuitry to the meteoroid detector panels for Pegasus II and III. If
a meteoroid impact causes a detector panel to short, an attempt is made to
return the panel to operational status by applying a high current to the shorted
area and thereby burning out the short. This has proved to be avery worthwhile
addition.

Throughout the entire history of the space program the question of just
how the space environment affects electronic systems has constantly been
explored. However, since it is impossible to completely simulate the space
environment, engineers and experimenters are not entirely confident in the
artificially produced environmental effects on their systems. The three Pegasus
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satellites offer an excellent opportunity to study such effects since the combined
number of systems immake a statistically meaningful sample size. At the present
time a statistical evaluation of the failures is being undertaken. The information
provided by the PAM channels is being plotted in time series form and such
factors as long-term trends, cyclical variations, and seasonal variations are
being considered for each system. In addition, an attempt to find certain cross-
correlation information is under way.

In order to provide some details on tiie relatively few electronic failures
experienced thus far on the three Pegasus satellites, the failures will be briefly
discussed. Quae problem common fo all three satellites is failure of the Zener
regulator system used to recharge the batterizs from the solar panels. These
failures were not altogether unexpected, since the Zeners are operated nearer
their rated load thar the other components are. Failure of the Zener string
results in increased power being dissipated in the electronics canister and a
corresponding increase in canister temperature. The increase in canister
temperature is expected to shorten the life of electronic components in the
canister, but is not a serious problem at this time.

Pegasus |

1. The Zener shunt regulator ""A'" geries string went out of tolerance
on Decemper 13, 1965, causing the solar bus voltage to exceed the desired
level. The redundant Zener shunt regulato. ""B" series string was selected and
is operating normally.

2. The current limiter in the "A" Battery Charger failed on May 17,
1966. The consequent heavy charge rate caused the battery temperature to
rise. Battery ""B" was selected and is performing normally.

3. On May 17, 1966, a short in one battery cell caused the Battery '"B"
voltage to drop from its normal 29 volts to 27. There has been no additional
decrease in battery voltage and no adverse effect on system Jyoeration.

Pegasus ||

i. The Zener shunt regulator ""A'" series string went out of tolerance
on October 12, 1965, causing the solar bus voltage to exceed the desired level.
The redundant Zener shunt regulator '"B'' gseries string was selzcted and is
operating normally.
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2. The temperature sensors on the top-Y Solar Panel, the side +Z
Solar Panel, and the side -Z Solar Panel are operating intermittently, resulting
in the loss of some housekeeping data.

3. The PAM (analog) housekeeping data became intermittent on May 28,
1965, resulting in loss of approximately 75 pe.cent of the housekeeping data.

This is attributed to a dirty connector causing loss of sync pulses to the PAM
commutator. This connector fault is attributed to exposure to rain while the
launch vehicle was on the pad just prior to launch.

Pegasus 11

1. The Zener shunt regulator ""B" series string went out of tolerance
on January 18, 1966, causing the solar panel voltage to rise from the nominal
regulated 42 volts to maximums exceeding 50 volts. The redundant Zener shunt
regulator "A'" series string was selected and operated normally until August 2,
1966, at which time a Zener shorted, resulting in a low solar panel output
voltage. The Zener shunt regulator ""B'' series string was selected. On Feb-
ruary 2, 1967, elevated temperatures were experienced in the batteries, the
battery controller, and the power distribution unit. The Zener shunt regulator
"A'" geries string was selected; it operated intermittently for approximately
20 hours, then assumed the failed characteristics of the '"B" series string.

2. On February 11, 196€, the Number 2 FM transmitter failed. Normal
voliages were being supplied to the transmitter, but there was ro output. This
transmitter has since operated intermittently. The redundant transmitter has
operated normally.

3. The PAM housekeeping data indicate that the 28-volt subsystem
voltage drops to zero at times. The memory content was checked on several
days when the PAM data indicated low subsystem voltage, and in eaca case
contained some incorrect data. This problem is presently attributed to the
batteries being switched during a dark portion of the orbit. The investigation is
continuing. The frequency of this problem is not known because of the low pro-
bability of detecting it with the PAM data.

A summary of the operational status of all electronic subsystems for
Pegasus I, II, and III i5 shown in Table III.

George C. Marshail Space Flight Center
National Aeronautics and Space Adminisiration
Huntsvi"e, Alabama July 7, 1967
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